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[2 ,3 ,5 ,6 - H4]-2-Hydroxynaringenin is synthesised and incubated with commercially available UDP-glu-
cose and the crude protein extract from Desmoduim uncinatum leaves. The organic extract produces
isotopically labelled [20 ,30,50 ,60-2H4]-vitexin and [20,30,50 ,60-2H4]-isovitexin. Repeating the experiment with
denatured protein or replacing the 2-hydroxynaringenin with [20,30 ,50 ,60-2H4]-apigenin or [20,30 ,50 ,60-2H4]-
naringenin results in no observable incorporation. 2-Hydroxynaringenin is therefore the substrate for C-
glucosylflavonoid biosynthesis in D. uncinatum.

� 2009 Elsevier Ltd. All rights reserved.
Desmodium uncinatum (Jacq.) is used as an intercrop in subsis-
tence farming of maize (Zea mays) in East Africa where it has dem-
onstrated effectiveness in the suppression of parasitism by the
parasitic plant Striga hermonthica (Del.) Benth., a weed that can
devastate crops in the region.1–4 The effect was shown to be allelo-
pathic5 and during investigations into the mechanism, we have
discovered C-glycosylflavonoids, in particular the di-C-glycosylfl-
avonoid, 6-C-a-L-arabinopyranosyl-8-C-b-D-glucopyranosylapige-
nin (isoschaftoside), in the root extract and root exudates of D.
uncinatum that affect the early stages of Striga development.6

Elucidating the biosynthetic pathway for this class of compound
and characterising the enzymes that control C-glycosylflavonoid
biosynthesis provides the potential for transferring the mechanism
for Striga protection from this cattle forage legume into an edible
crop legume,6 and C-glycosyltransferase (CGT) activity is a key role.
Previous biosynthetic studies have shown incorporation of radiola-
belled naringenin and p-coumaric acid but not apigenin into C-
glucosylflavones by Swertia japonica (Gentianaceae)7 and Spirodela
polyrhiza (Lemnaceae).8,9 This work used whole plants and did not
preclude the possibility of a 2-hydroxyflavanone as the glucosyla-
tion substrate. Later work showed incorporation of 2-hydroxyflav-
anones into C-glucosylflavones by a protein preparation from
buckwheat cotyledons, Fagopyrum esculentum (Polygonaceae)10,11
ll rights reserved.
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and more recently in wheat, Triticum aestivum L. (Poaceae) and rice,
Oryza sativa (Poaceae).12

To study C-glycosylflavonoid biosynthesis in D. uncinatum we
completed a total synthesis of 2-hydroxynaringenin (1) using a
rearrangement as the key to creating the carbon skeleton (Scheme
1). 6-Hydroxy-2,4-dibenzyloxyacetophenone (2) was prepared by
benzylation of triacetoxyphloroglucinol13 and acylation followed
by monodeprotection. Esterification with 4-benzyloxybenzoic acid
gave 3, a substrate that yields 4 after the Baker–Venkataraman
rearrangement. Deprotection produces 2-hydroxynaringenin (1)
which could be further converted into apigenin (5) by dehydration
in mild acid and this was hydrogenated to naringenin (6), with a
side product being dihydronaringenin chalcone. NMR analysis of
1 was performed at �60 �C in acetone at which temperature the
interconverting ring-closed and open-chain tautomers were dis-
tinct on the NMR timescale.14 The reaction sequence was repeated
using [2,3,5,6-2H4]-4-benzyloxybenzoic acid prepared from
[2,3,4,5,6-2H5]-phenol (Scheme 2)15 to yield the labelled materials
[20,30,50,60-2H4]-1, [20,30,50,60-2H4]-5 and [20,30,50,60-2H4]-6.

Incubation of [20,30,50,60-2H4]-1 with UDP-glucose and a pro-
tein extract isolated from D. uncinatum leaves was per-
formed.16,17 The organic residue was purified by HPLC to afford
vitexin (8-C-b-D-glucopyranosylapigenin) and isovitexin (6-C-b-
D-glucopyranosylapigenin) which were produced during the as-
say. Electrospray mass spectrometry showed that during the
incubation with leaf protein [20,30,50,60-2H4]-1 was converted into
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Scheme 1. Synthesis of 2-hydroxynaringenin (1). Reagents and conditions: (i) Ac2O, pyridine; (ii) NaH, BnCl, H2O, quant. 2 steps; (iii) AcOH, TFAA, 0 �C, 87%; (iv) TiCl4, 76%;
(v) water-soluble DCC, 4-benzyloxybenzoic acid, DMAP; (vi) KOH, pyridine, 75 �C, 67%; (vii) H2, 10% Pd/C, 65%; (viii) MeOH, few drops 3 N HCl, quant.; (ix) H2, 10% Pd/C, 25%.
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both [20,30,50,60-2H4]-vitexin and the regioisomer [20,30,50,60-2H4]-
isovitexin (Fig. 1). A small quantity of unlabelled vitexin and iso-
vitexin was present in the labelling experiments and protein
controls as they are water soluble and co-extracted with the leaf
proteins. In further experiments [20,30,50,60-2H4]-5 and
[20,30,50,60-2H4]-6 were not converted into [20,30,50,60-2H4]-vitexin
(Fig. 2) and so are not C-glucosylation substrates. There was
no conversion of [20,30,50,60-2H4]-1 into vitexin or isovitexin in
the controls without the addition of UDP-glucose, nor in experi-
ments containing protein denatured by boiling water, thereby
demonstrating glucosylation to be enzyme-mediated.

[20,30,50,60-2H4]-1 exists as a mixture of tautomers and either the
open-chain or the ring-closed form may be C-glucosylated. The
nucleophilicity of the aromatic ring to facilitate C-glucosylation
could be increased by a phenolate ion stabilised by the keto-enol
form of the open-chain [Fig. 3 (inset)], by analogy to the proposed
Figure 1. ESMS spectra of HPLC-purified vitexin (A) and isovitexin (B) from crude
mechanism of Streptomyces fradiae C-glycosyltransferase, UrdGT2,
in which the Asp137 residue removes a phenolic proton, stabilising
the substrate and increasing the nucleophilicity.18 [20,30,50,60-2H4]-
1 is a symmetric substrate when in the open-chain form and also
after glucosylation, so the production of both C-glucosylflavones,
vitexin and isovitexin, may result either from chemical dehydra-
tion of the symmetric glucosylated intermediate or by dehydration
controlled by the C-glycosyltransferase (CGT) or a CGT-indepen-
dent dehydratase.

The substrate for C-glucosylation has been demonstrated to be
1 in Poacaea12 and Polygonaceae,10,11 and other work in the Lemn-
aceae8,9 and Gentianaceae7 is consistent. We have completed a
high yielding total synthesis of 1, which can be adapted to produce
substrate analogues, and used stable isotopic labelling of 1 to dem-
onstrate that it is the C-glucosylation substrate for the biosynthesis
of C-glucosylflavones vitexin and isovitexin in D. uncinatum (Faba-
D. uncinatum leaf protein incubated with UDP-glucose and [20 ,30 ,50 ,60-2H4]-1.



Figure 2. ESMS spectra of HPLC-purified vitexin from crude D. uncinatum leaf protein incubated with UDP-glucose and (C) [20 ,30 ,50 ,60-2H4]-5 or (D) [20 ,30 ,50 ,60-2H4]-6.
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Figure 3. Biosynthetic pathway for C-glucosylflavonoid biosynthesis in D. uncinatum and (inset) putative mechanism via the keto-enol tautomer of 2-hydroxynaringenin (1).
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ceae). This further supports a general biosynthetic pathway for C-
glucyosylflavones in plants (Fig. 3).
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